If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+4x-364=0
a = 36; b = 4; c = -364;
Δ = b2-4ac
Δ = 42-4·36·(-364)
Δ = 52432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52432}=\sqrt{16*3277}=\sqrt{16}*\sqrt{3277}=4\sqrt{3277}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{3277}}{2*36}=\frac{-4-4\sqrt{3277}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{3277}}{2*36}=\frac{-4+4\sqrt{3277}}{72} $
| {7x+2}=23 | | 11.80=2g+3.52 | | 11x-15=3x+4 | | 5y-2=31 | | (2x-1)/5=(x-3)/4 | | -7w+3(w-2)=22 | | X+x(.96)=14030 | | 270000000=(1000000+2x)+15000000+4x)+ | | 37.29=g+3.83 | | -4p-4=-4 | | 5z=29 | | 12x^2+196=112x | | 34.42=7g+3.69 | | -w/5=-48 | | 2(3+3x)=13 | | (+78)x=(-13) | | 6a^2+49a+8=0 | | b/6=7/2 | | 3x+3x-1-1=3x+4x-3x | | U/6=3u= | | 6/7=n/42 | | 6/7=n/43 | | X-x(.04)=14030 | | 6x(3x-5)=22 | | k/12=-(1/3)-k/12 | | 16k^2-8k-27=0 | | 5/7=x42 | | -8/9(3t5)=(2/3)t-12 | | 3x-27=x+13 | | 45n=325 | | 5x+3x5=3 | | 3/7=x245 |